已知曲线 C 1 : x a + y b = 1 ( a > b > 0 ) 所围成的封闭图形的面积为 4 5 ,曲线 C 1 的内切圆半径为 2 5 3 .记 C 2 为以曲线 C 1 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆 C 2 的标准方程; (Ⅱ)设 A B 是过椭圆 C 2 中心的任意弦, l 是线段 A B 的垂直平分线. M 是 l 上异于椭圆中心的点. (1)若 M O = λ O A ( O 为坐标原点),当点 A 在椭圆 C 2 上运动时,求点 M 的轨迹方程; (2)若 M 是 l 与椭圆 C 2 的交点,求 △ A M B 的面积的最小值.
已知在⊿ABC中,A(3,2)、B(-1,5),C点在直线上,若⊿ABC的面积为10,求C点的坐标.
(本小题满分12分) 在直三棱柱ABC—A1B1C1中,∠ABC=90°,BC=CC1,M、N分别为BB1、 A1C1的中点. (1)求证:CB1⊥平面ABC1; (2)求证:MN//平面ABC1.
求经过两直线和的交点且与直线垂直的直线方程.
已知函数f(x)=4x3-3x2cosθ+,其中x∈R,θ为参数,且0≤θ≤2π. (1)当时,判断函数f(x)是否有极值; (2)要使函数f(x)的极小值大于零,求参数θ的取值范围; (3)若对(2)中所求的取值范围内的任意参数θ,函数f(x)在区间(2A-1,A)内都是增函数,求实数A的取值范围.
已知 (1)若的最小值记为,求的解析式. (2)是否存在实数,同时满足以下条件:①;②当的定义域为[,]时,值域为[,];若存在,求出,的值;若不存在,说明理由.