(本题满分12分)已知函数在定义域上是奇函数,又是减函数。(Ⅰ)证明:对任意的,有(Ⅱ)解不等式。
(本小题满分12分)已知△ABC中,角A,B,C对边分别是a,b,c,且tanB=,·.(1)求tanB的值;(2)求的值.
((本小题满分14分)已知两点M(-1,0),N(1,0),且点P使,,成公差小于零的等差数列。(1)点P的轨迹是什么曲线?(2)若点P的坐标为(x0,y0),记为θ为的夹角,求tanθ.
((本小题满分13分)已知a>0,函数,x∈[0,+∞).设x1>0,记曲线在点M(x1,)处的切线为l.(1)求l的方程;(2)设l与x轴的交点为(x2,0).证明:①x2;②若x1,则<x2<x1.
((本小题满分12分)设为等差数列,Sn为数列的前n项和,已知S7=7,S15=75,Tn为数列的前n项和,求Tn.
((本小题满分12分)如图,已知四棱锥P—ABCD的底面是直角梯形,∠ABC=∠BCD=90o,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求二面角P—DC—B的大小.