已知圆:,直线的方程为,点是直线上一动点,过点作圆的切线、,切点为、.(1)当的横坐标为时,求∠的大小;(2)求证:经过A、P、M三点的圆必过定点,并求出该定点的坐标;(3)求证:直线必过定点,并求出该定点的坐标;(4)求线段长度的最小值.
如图,在四边形中,垂直平分,且,现将四边形沿折成直二面角,求: (1)求二面角的正弦值; (2)求三棱锥的体积.
求圆心在直线上,与轴相切,且截直线所得的弦长为的圆的方程.
如图,四棱锥中,底面是边长为2的正方形,其余四个侧面都是侧棱长为的等腰三角形,且. (1)求证:平面; (2)是的中点,求与平面所成角的正切值.
如图,在正方体中,是的中点, 求证: (1)∥平面; (2)求异面直线与所成角的余弦值.
求经过直线与的交点,且在两坐标轴上的截距相等的直线的方程.