已知圆:,直线的方程为,点是直线上一动点,过点作圆的切线、,切点为、.(1)当的横坐标为时,求∠的大小;(2)求证:经过A、P、M三点的圆必过定点,并求出该定点的坐标;(3)求证:直线必过定点,并求出该定点的坐标;(4)求线段长度的最小值.
选修4—5:不等式选讲 已知实数满足,且. (Ⅰ)证明:; (Ⅱ)证明:.
选修4-4:坐标系与参数方程 在直角坐标系中,曲线的参数方程为(为参数),若以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:(其中为常数). (Ⅰ)若曲线与曲线只有一个公共点,求的取值范围; (Ⅱ)当时,求曲线上的点与曲线上点的最小距离.
选修4—1:几何证明选讲 如图,已知点在⊙直径的延长线上,切⊙于点,是的平分线,交于点,交于点. (Ⅰ)求的度数; (Ⅱ)若,求.
设函数 (1)当时,求函数的最大值; (2)令,()其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围; (3)当,,方程有唯一实数解,求正数的值.
已知椭圆的左,右顶点分别为,圆上有一动点,点在轴的上方,,直线交椭圆于点,连接. (1)若,求△的面积; (2)设直线的斜率存在且分别为,若,求的取值范围.