.点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,. (1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求点M的坐标;(3)在(2)的条件下,求椭圆上的点到点M的距离的最小值.
已知点A(3,2), 点P是抛物线y2=4x上的一个动点,F为抛物线的焦点,求的最小值及此时P点的坐标.
函数. (1)若,求函数的定义域; (2)设,当实数,时,求证:.
在平面直角坐标系中,已知曲线:(为参数),将上的所有点的横坐标、纵坐标分别伸长为原来的和倍后得到曲线.以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线:. (1)试写出曲线的极坐标方程与曲线的参数方程; (2)在曲线上求一点,使点到直线的距离最小,并求此最小值.
已知为半圆的直径,,为半圆上一点,过点作半圆的切线,过点作于,交半圆于点,. (1)求证:平分; (2)求的长.
已知函数. (1)若在处的切线与直线垂直,求的单调区间; (2)求在区间上的最大值.