.点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,. (1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求点M的坐标;(3)在(2)的条件下,求椭圆上的点到点M的距离的最小值.
(本小题满分12分)山东省济南市为了共享优质教育资源,实现名师交流,甲、乙两校各有名教师报名交流,其中甲校男女,乙校男女.(Ⅰ)若从甲校和乙校报名的教师中各任选名,写出所有可能的结果,并求选出的名教师性别相同的概率;(Ⅱ)若从报名的名教师中任选名,写出所有可能的结果,并求选出的名教师来自同一学校的概率.
(本小题满分12分)在中,,,分别是角,,的对边,且.(Ⅰ)求角的大小;(Ⅱ)若函数,.(1)求函数的最小正周期;(2)求函数在区间上的最大值和最小值.
(本小题满分14分)已知函数(为常数,为自然对数的底数)是实数集上的奇函数,函数在区间上是减函数.(1)求实数的值;(2)若在上恒成立,求实数的取值范围;(3)讨论关于的方程的根的个数.
(本小题满分13分)如图,椭圆()经过点,离心率.(1)求椭圆的方程;(2)设直线与椭圆交于,两点,点关于轴的对称点为(与不重合),则直线与轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
(本小题满分12分)某项选拔共有三轮考核,每轮设有一个问题,回答问题正确者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为,,,且各轮问题能否正确回答互不影响.(1)求该选手被淘汰的概率;(2)记该选手在考核中回答问题的个数为,求随机变量的分布列与数学期望.