已知{an}是正数组成的数列,a1=1,且点()(nN*)在函数y=x2+1的图象上(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足bn=(n∈N*),求数列{bn}的前n项和。
在长方体中,,为棱的中点. (Ⅰ)求证面面; (Ⅱ)求三棱锥的体积
定义在上的偶函数,已知当时的解析式 (Ⅰ)写出在上的解析式; (Ⅱ)求在上的最大值.
函数的定义域为A,值域为B,求.
计算(Ⅰ)(Ⅱ)
设分别是椭圆的左右焦点,过左焦点作直线与椭圆交于不同的两点、. (Ⅰ)若,求的长; (Ⅱ)在轴上是否存在一点,使得为常数?若存在,求出点的坐标;若不存在,说明理由