如图,由若干个小正方形组成的k层三角形图阵,第一层有1个小正方形,第二层有2个小正方形,依此类推,第k层有k个小正方形.除去最底下的一层,每个小正方形都放置在它下一层的两个小正方形之上.现对第k层的每个小正方形用数字进行标注,从左到右依次记为,其中(),其它小正方形标注的数字是它下面两个小正方形标注的数字之和,依此规律,记第一层的小正方形标注的数字为.(1)当k=4时,若要求为2的倍数,则有多少种不同的标注方法?(2)当k=11时,若要求为3的倍数,则有多少种不同的标注方法?
. (满分12分)定义在上的函数满足,且,当时,。1)求在上的解析式; 2)若在上是减函数,求函数在上的值域。
(满分12分) 在中,分别是角的对边,且。 1)求的大小; 2)若,,求的面积。
本大题9分) 已知与圆C:相切的直线l分别交x轴和y轴正半轴于A,B两点,O为原点,且|OA|=a,|OB|=b(a>2,b>2)。 (1)求证:(a-2)(b-2)=2; (2)求△AOB面积的最小值。
(本大题9分) 求满足下列条件的直线方程: (1)经过点P(2,-1)且与直线2x+3y+12=0平行; (2)经过点Q(-1,3)且与直线x+2y-1=0垂直; (3)经过点M(1,2)且与点A(2,3)、B(4,-5)距离相等; (4)经过点N(-1,3)且在轴的截距与它在y轴上的截距的和为零.
(本大题8分)已知正方体,求: (1)异面直线与所成的角; (2)证明:直线//平面C (3)二面角D— AB—C的大小;