如图,由若干个小正方形组成的k层三角形图阵,第一层有1个小正方形,第二层有2个小正方形,依此类推,第k层有k个小正方形.除去最底下的一层,每个小正方形都放置在它下一层的两个小正方形之上.现对第k层的每个小正方形用数字进行标注,从左到右依次记为,其中(),其它小正方形标注的数字是它下面两个小正方形标注的数字之和,依此规律,记第一层的小正方形标注的数字为.(1)当k=4时,若要求为2的倍数,则有多少种不同的标注方法?(2)当k=11时,若要求为3的倍数,则有多少种不同的标注方法?
设无穷数列的首项,前项和为(),且点在直线上(为与无关的正实数). (1)求证:数列()为等比数列; (2)记数列的公比为,数列满足,设,求数列的前项和; (3)(理)若(1)中无穷等比数列()的各项和存在,记,求函数的值域.
已知双曲线(其中). (1)若定点到双曲线上的点的最近距离为,求的值; (2)若过双曲线的左焦点,作倾斜角为的直线交双曲线于、两点,其中,是双曲线的右焦点.求△的面积.
(1)设、是不全为零的实数,试比较与的大小; (2)设为正数,且,求证:.
《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差. 按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田. (1)计算弧田的实际面积; (2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)
在等差数列和等比数列中,,,是前项和. (1)若,求实数的值; (2)是否存在正整数,使得数列的所有项都在数列中?若存在,求出所有的,若不存在,说明理由; (3)是否存在正实数,使得数列中至少有三项在数列中,但中的项不都在数列中?若存在,求出一个可能的的值,若不存在,请说明理由.