如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90,BC=,求二面角S-AB-C的余弦值.
已知关于的不等式的解集为。(1)当时,求集合;(2)若,求实数的取值范围。
已知a、b是两个互不相等的正实数,比较A=与B=的大小。
设,求满足下列条件的实数的值:至少有一个正实数,使函数的定义域和值域相同。
已知关于的不等式:(1)当时,求该不等式的解集; (2)当时,求该不等式的解集.
已知函数。(1)若函数是上的增函数,求实数的取值范围;(2)当时,若不等式在区间上恒成立,求实数的取值范围;(3)对于函数若存在区间,使时,函数的值域也是,则称是上的闭函数。若函数是某区间上的闭函数,试探求应满足的条件。