如图,A,B,C为函数的图象上的三点,它们的横坐标分别是t, t+2, t+4(t1). (1)设ABC的面积为S 求S=f (t) (2)判断函数S=f (t)的单调性; (3) 求S=f (t)的最大值.
已知函数,的最大值是1,其图像经过点. (1)求的解析式,并判断函数的奇偶性. (2)已知,且,求的值.
如图,圆内有一点,过点作直线交圆于 两点.(1)当直线经过圆心时,求直线的方程;(2)当弦被点平分时,写出直线方程;(3)当直线倾斜角为时,求的面积.
如图,在三棱锥 P - A B C 中, △ P A B 是等边三角形, ∠ P A C = ∠ P B C = 90 ° .
(1)证明: A B ⊥ P C ; (2)若 P C = 4 ,且平面 P A C ⊥ 平面 P B C ,求三棱锥 P - A B C 体积.
如图,一个圆锥的底面半径为2cm,高为 6cm,其中有一个高为 cm的内接圆柱. (1)试用表示圆柱的侧面积;(2)当为何值时,圆柱的侧面积最大.
求过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程.