在△ABC中,角A,B,C的对边分别是a,b,c,已知(1)求的值;(2)若,求边c的值.
已知椭圆方程为,射线与椭圆的交点为,过作倾斜角互补的两条直线,分别与椭圆于、两点(异于). (1)求证:直线; (2)求面积的最大值.
已知函数f(t)= (1)求f(t)的值域G; (2)若对于G内的所有实数x,不等式恒成立,求实数m的取值范围.
已知,. (1)若,求的值. (2)若,求的单调的递减区间;
某蔬菜基地种植甲、乙两种无公害蔬菜,生产一吨甲种蔬菜需用电力9千瓦时,耗肥4吨;生产一吨乙种蔬菜需用电力5千瓦时,耗肥5吨。现该基地仅有电力390千瓦时,肥240吨。已知生产一吨甲种蔬菜获利700元,生产一吨乙种蔬菜获利500元,在上述电力、肥的限制下,问如何安排甲、乙两种蔬菜种植,才能使利润最大?最大利润是多少?
在中,a、b、c分别是角A、B、C的对边,且为最大边,. (1)求的值; (2)若,求边长.