如图,抛物线的顶点为坐标原点,焦点在轴上,准线与圆相切.(Ⅰ)求抛物线的方程;(Ⅱ)已知直线和抛物线交于点,命题P:“若直线过定点,则”,请判断命题P的真假,并证明。
本题共有2个小题,第(1)小题满分4分,第(2)小题满分10分.设三角形的内角所对的边长分别是,且.若不是钝角三角形,求:(1)角的范围;(2)的取值范围.
如图,已知圆锥的底面半径为,点Q为半圆弧的中点,点为母线的中点.若直线与所成的角为,求此圆锥的表面积.
已知椭圆的中心在原点,焦点在轴上,它的一个顶点恰好经过抛物线的准线,且经过点. (1)求椭圆的方程;(2)若直线的方程为.是经过椭圆左焦点的任一弦,设直线与直线相交于点,记的斜率分别为.试探索之间有怎样的关系式?给出证明过程.
已知函数,.(1)设曲线在处的切线与直线平行,求此切线方程;(2)当时,令函数,求函数在定义域内的极值点;(3)令,对且,都有 成立,求的取值范围.
已知四边形满足,,是的中点,将沿着翻折成,使面面,分别为的中点. (1)求三棱锥的体积;(2)证明:∥平面;(3)证明:平面平面