如图,抛物线的顶点为坐标原点,焦点在轴上,准线与圆相切.(Ⅰ)求抛物线的方程;(Ⅱ)已知直线和抛物线交于点,命题P:“若直线过定点,则”,请判断命题P的真假,并证明。
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足(1)求△ABC的面积;(2)若b+c=6,求a的值.
已知函数f(x)=x|x-2|.(1)写出f(x)的单调区间; (2)解不等式f(x)<3.
已知集合A=,B={x|x2-2x-m<0},(1)当m=3时,求A∩(∁RB);(2)若A∩B={x|-1<x<4},求实数m的值.
已知双曲线的离心率为2,焦点与椭圆的焦点相同,求双曲线的方程及焦点坐标。
Δ两个顶点的坐标分别是,边所在直线的斜率之积等于,求顶点的轨迹方程,并画出草图。