(本小题满分12分)如图,在四棱锥中,平面,底面为直角梯形,∥,,(Ⅰ)求异面直线与所成角的大小;(Ⅱ)求证:⊥平面;(Ⅲ)求直线与平面所成角大小的正切值.
学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择。调查表明,凡是在这星期一选A菜的,下星期一会有改选B菜;而选B菜的,下星期一会有改选A菜。用分别表示第个星期选A的人数和选B的人数. ⑴试用表示,判断数列是否成等比数列并说明理由; ⑵若第一个星期一选A神菜的有200人,那么第10个星期一选A种菜的大约有多少人?
已知向量,函数. ⑴设,x为某三角形的内角,求时x的值; ⑵设,当函数取最大值时,求cos2x的值.
已知函数. ⑴求函数在处的切线方程; ⑵当时,求证:; ⑶若,且对任意恒成立,求k的最大值.
巳知椭圆的离心率是. ⑴若点P(2,1)在椭圆上,求椭圆的方程; ⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.
已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点,且PA∥平面QBD. ⑴确定Q的位置; ⑵求二面角Q-BD-C的平面角的余弦值.