(本小题满分12分)如图,在四棱锥中,平面,底面为直角梯形,∥,,(Ⅰ)求异面直线与所成角的大小;(Ⅱ)求证:⊥平面;(Ⅲ)求直线与平面所成角大小的正切值.
已知,曲线上任意一点分别与点、连线的斜率的乘积为.(Ⅰ)求曲线的方程;(Ⅱ)设直线与轴、轴分别交于、两点,若曲线与直线没有公共点,求证:.
如图,已知多面体的底面是边长为的正方形,底面,,且.(Ⅰ)求多面体的体积;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面平行,要求保留作图痕迹,但不要求证明.
已知不等式2|x-3|+|x-4|<2a.(Ⅰ)若a=1,求不等式的解集;(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.
已知曲线C1的极坐标方程为ρcos(θ-)=-1,曲线C2的极坐标方程为ρ=2cos(θ-).以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.(Ⅰ)求曲线C2的直角坐标方程;(Ⅱ)求曲线C2上的动点M到曲线C1的距离的最大值.
如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形;(Ⅰ)求AM的长;(Ⅱ)求sin∠ANC.