(本题满分18分,第(1)题4分、第(2)题8分、第(3)题6分)已知二次曲线的方程:.(1)分别求出方程表示椭圆和双曲线的条件;(2)对于点,是否存在曲线交直线于、两点,使得?若存在,求出的值;若不存在,说明理由;(3)已知与直线有公共点,求其中实轴最长的双曲线方程.
已知点,点在双曲线上.(Ⅰ)当最小时,求点的坐标;(Ⅱ)过点的直线与双曲线的左、右两支分别交于、两点,为坐标原点,若的面积为,求直线的方程.
已知为抛物线的焦点,点在抛物线上,且.(Ⅰ)求抛物线的方程;(Ⅱ)过点作斜率为2的直线交抛物线于、两点,求弦的中点坐标.
已知是椭圆上任意一点,为点在直线上的射影,,其中为坐标原点.(Ⅰ)求动点的轨迹的方程;(Ⅱ)过点的直线与(Ⅰ)中曲线相切,求切线的方程.
已知:直线的图象不经过第二象限,:方程表示焦点在轴上的椭圆,若为假命题,求实数的取值范围.
在平面直角坐标系xoy中,点P到两点的距离之和等于4,设点P的轨迹为C.(1)写出C的方程;(2)设直线与C交于A,B两点,k为何值时以线段AB为直径的圆过原点?