已知点,点在双曲线上.(Ⅰ)当最小时,求点的坐标;(Ⅱ)过点的直线与双曲线的左、右两支分别交于、两点,为坐标原点,若的面积为,求直线的方程.
已知棱长为1的正方体ABCD-A1B1C1D1中,E、F、M分别是A1C1、A1D和B1A上任一点,求证:平面A1EF∥平面B1MC.
已知棱长为1的正方体ABCD-A1B1C1D1,求平面A1BC1与平面ABCD所成的二面角的大小
如图,已知平行六面体ABCD—A1B1C1D1的底面ABCD是菱形且∠C1CB=∠C1CD=∠BCD=60°.(1)证明:C1C⊥BD;(2)假定CD=2,CC1=,记面C1BD为α,面CBD为β,求二面角α—BD—β的平面角的余弦值;(3)当的值为多少时,能使A1C⊥平面C1BD?请给出证明.
如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.(1)求的长;(2)求cos< >的值;(3)求证:A1B⊥C1M.
四棱锥P—ABCD中,底面ABCD是一个平行四边形, ={2,-1,-4},={4,2,0},={-1,2,-1}.(1)求证:PA⊥底面ABCD;(2)求四棱锥P—ABCD的体积;(3)对于向量={x1,y1,z1},={x2,y2,z2},={x3,y3,z3},定义一种运算:(×)·=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2y1z3-x3y2z1,试计算(×)·的绝对值的值;说明其与四棱锥P—ABCD体积的关系,并由此猜想向量这一运算(×)·的绝对值的几何意义..