本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.设函数是定义域为R的奇函数.(1)求k值;(2)(文)当时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;(理)若f(1)<0,试判断函数单调性并求使不等式恒成立的的取值范围;(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.
如图,直线与椭圆交于两点,记的面积为,是坐标原点. (1)当时,求的最大值; (2)当时,求直线的方程.
已知椭圆的长轴长为4,且点在椭圆上. (1)求椭圆的方程; (2)过椭圆右焦点斜率为的直线交椭圆于两点,若,求直线的方程
已知直线及圆. (1)求垂直于直线且与圆相切的直线的方程; (2)过直线上的动点作圆的一条切线,设切点为,求的最小值.
如图,已知抛物线:,其上一点到其焦点的距离为,过焦点的直线与抛物线交于左、右两点. (1)求抛物线的标准方程; (2)若,求直线的方程.
已知椭圆:的离心率为,是椭圆的左焦点. (1)求椭圆的方程; (2)若直线与椭圆相交于不同的两点.且线段的中点在圆上,求的值.