.(本小题满分12分)已知数列的前n项和为,若,且,数列的前n项和为.(I)求证:为等比数列;(Ⅱ)求;(III)设,求证:
(本小题满分12分)设向量,点为动点,已知。(1)求点的轨迹方程;(2)设点的轨迹与轴负半轴交于点,过点的直线交点的轨迹于、两点,试推断的面积是否存在最大值?若存在,求其最大值;若不存在,请说明理由。
(本小题满分12分)如图:在矩形内,两个圆、分别与矩形两边相切,且两圆互相外切。若矩形的长和宽分别为和,试把两个圆的面积之和表示为圆半径的函数关系式,并求的最大值和最小值。
(本小题满分12分)在调查的名上网的学生中有名学生睡眠不好,名不上网的学生中有名学生睡眠不好,利用独立性检验的方法来判断是否能以的把握认为“上网和睡眠是否有关系”.附:;参考数据
,.
(本小题满分12分)已知函数,求的值域。
(本小题满分14分)已知曲线在点处的切线斜率为(1)求的极值;(2)设在(-∞,1)上是增函数,求实数的取值范围;(3)若数列满足,求证:对一切