(本小题满分12分)如图,已知正三棱柱的各棱长都是4, 是的中点,动点在侧棱上,且不与点重合.(I)当时,求证:;(II)设二面角的大小为,求的最小值.
(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线M的参数方程为(为参数),若以直角坐标系中的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为(t为参数).(Ⅰ)求曲线M和N的直角坐标方程,(Ⅱ)若曲线N与曲线M有公共点,求t的取值范围.
(本小题满分10分)选修4-1:几何证明选讲如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.(Ⅰ)求证:AC·BC="AD·AE;" (Ⅱ)若AF="2," CF=2,求AE的长
(本小题满分12分)已知函数f(x)=ax+ln(x-1),其中a为常数.(Ⅰ)试讨论f (x)的单调区间,(Ⅱ)若时,存在x使得不等式成立,求b的取值范围.
(本小题满分12分)设椭圆C:,F1,F2为左、右焦点,B为短轴端点,且S△BF1F2=4,离心率为,O为坐标原点.(Ⅰ)求椭圆C的方程,(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点M,N,且满足?若存在,求出该圆的方程,若不存在,说明理由.
(本小题满分12分)某商场每天(开始营业时)以每件150元的价格购人A商品若千件(A商品在商场的保鲜时间为10小时,该商场的营业时间也恰好为10小时),并开始以每件300元的价格出售,若前6小时内所购进的商品没有售完,则商场对没卖出的A商品将以每件100元的价格低价处理完毕(根据经验,4小时内完全能够把A商品低价处理完毕,且处理完毕后,当天不再购进A商品).该商场统计了100天A商品在每天的前6小时内的销售量,制成如下表格(注:视频率为概率).(其中x+y=70)(Ⅰ)若某天该商场共购人6件该商品,在前6个小时中售出4件.若这些产品被6名不同的顾客购买,现从这6名顾客中随机选2人进行服务回访,则恰好一个是以300元价格购买的顾客,另一个以100元价格购买的顾客的概率是多少?(Ⅱ)若商场每天在购进5件A商品时所获得的平均利润最大,求x的取值范围.