(本小题满分10分)选修4-1:几何证明选讲如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.(Ⅰ)求证:AC·BC="AD·AE;" (Ⅱ)若AF="2," CF=2,求AE的长
如图,已知⊥平面,∥,是正三角形,,且是的中点. (Ⅰ)求证:∥平面; (Ⅱ)求证:平面BCE⊥平面.
在中,已知,. (Ⅰ)求的值; (Ⅱ)若为的中点,求的长.
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为. (1)请将上面的列联表补充完整; (2)是否在犯错误的概率不超过0.5%的前提下认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:
(参考公式:,其中)
已知连续型随机变量的概率密度函数, (1)求常数的值,并画出的概率密度曲线; (2)求 .
甲与乙两人掷硬币,甲用一枚硬币掷3次,记正面朝上的次数为;乙用这枚硬币掷2次,记正面朝上的次数为。 (1)分别求与的期望; (2)规定:若,则甲获胜;若,则乙获胜,分别求出甲和乙获胜的概率.