(本小题满分12分)设椭圆C:,F1,F2为左、右焦点,B为短轴端点,且S△BF1F2=4,离心率为,O为坐标原点.(Ⅰ)求椭圆C的方程,(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点M,N,且满足?若存在,求出该圆的方程,若不存在,说明理由.
(本小题满分10分)如图,、是以为直径的圆上两点,,,是上一点,且,将圆沿直径折起,使点在平面的射影在上,已知. (1)求证:; (2)求三棱锥的体积.
(本小题满分10分)如图,四棱锥中,⊥平面,∥,,分别为线段的中点. (1)求证:平面; (2)求证:⊥平面.
(本小题满分13分)已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于. (1)求顶点的轨迹的方程,并判断轨迹为何种曲线; (2)当时,点为曲线 C上点,且点为第一象限点,过点作两条直线与曲线C交于两点,直线斜率互为相反数,则直线EF斜率是否为定值,若是,求出定值,若不是,请说明理由.
(本小题满分13分)如图,椭圆的离心率为,轴被曲线截得的线段长等于的短轴长.与轴的交点为M,过坐标原点O的直线与相交于点A、B. (1)求,的方程; (2)求证:MA⊥MB.
(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,, (1)证明:平面平面; (2)若,,令AE与平面ABCD所成角为,且,求该四棱锥的体积.