将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为.(1)求直线与圆相切的概率;(2)将的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
已知等比数列为递增数列,且,.(Ⅰ)求; (Ⅱ)令,不等式的解集为,求所有的和.
在中,角对边分别是,且满足. (Ⅰ)求角的大小;(Ⅱ)若,的面积为;求.
已知函数()的最小正周期为. (Ⅰ)求函数的单调增区间; (Ⅱ)将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象.求在区间上零点的个数.
在实数集R上定义运算: (Ⅰ)求的解析式; (Ⅱ)若在R上是减函数,求实数a的取值范围; (Ⅲ)若,在的曲线上是否存在两点,使得过这两点的切线互相垂直?若存在,求出切线方程;若不存在,说明理由.
四棱锥底面是平行四边形,面面,,,分别为的中点. (1)求证: (2)求证: (3)求二面角的余弦值.