已知函数f(x)=x-ax+(a-1),。(1)讨论函数的单调性;(2)证明:若,则对任意x,x,xx,有。
已知椭圆(a>b>0)的离心率为,右焦点为(,0). (I)求椭圆的方程; (Ⅱ)过椭圆的右焦点且斜率为k的直线与椭圆交于点A(xl,y1),B(x2,y2),若, 求斜率k是的值.
已知函数f(x)=lnx-ax(a>0). (I)当a=2时,求f(x)的单调区间与极值; (Ⅱ)若对于任意的x∈(0,+),都有f(x)<0,求a的取值范围.
如图,边长为4的正方形ABCD与矩形ABEF所在平面互相垂直,M,N分别为AE,BC的中点,AF=3. (I)求证:DA⊥平面ABEF; (Ⅱ)求证:MN∥平面CDFE; (Ⅲ)在线段FE上是否存在一点P,使得AP⊥MN? 若存在,求出FP的长;若不存在,请说明理由.
已知{an}是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=14. (I)求{an}的通项公式; (Ⅱ)若数列{bn}满足:…,求{bn}的前n项和.
已知函数f(x)=2sinxcosx-2cos2x+l. (I)求f(x)的最小正周期; (Ⅱ)若∈(0,),且f()=1,求的值。