在平面直角坐标系中,已知圆和圆,(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。
(本小题满分13分)在数列{a n}中,a1=2,点(a n,a n+1)(n∈N*)在直线y=2x上.(Ⅰ)求数列{ a n }的通项公式;(Ⅱ)若bn=log2 an,求数列的前n项和Tn.
(本小题满分15分)设函数,(其中为实常数且),曲线在点处的切线方程为.(Ⅰ) 若函数无极值点且存在零点,求的值;(Ⅱ) 若函数有两个极值点,证明的极小值小于.
(本小题满分15分)已知椭圆:,设该椭圆上的点到左焦点的最大距离为,到右顶点的最大距离为.(Ⅰ) 若,,求椭圆的方程;(Ⅱ) 设该椭圆上的点到上顶点的最大距离为,求证:.
(本小题满分14分)如图,在直角梯形中,,,,现将沿线段折成的二面角,设分别是的中点.(Ⅰ) 求证:平面;(II)若为线段上的动点,问点在什么位置时,与平面所成角为.
本小题满分14分)已知正项数列的前项和为,且满足.(I) 求数列的通项公式;(Ⅱ)设数列满足,且数列的前项和为,求证:数列为等差数列.