.(本小题共10分) 已知,且角是第二象限角,求与的值.
如图所示,扇形AOB,圆心角AOB的大小等于,半径为2,在半径OA上有一动点C,过点C作平行于OB的直线交弧AB于点P. (1)若C是半径OA的中点,求线段PC的长; (2)设,求面积的最大值及此时的值.
已知数列为等差数列,且. (1)求数列的通项公式; (2)证明….
已知函数. (1)当时,求函数的单调区间; (2)若函数有两个极值点,且,求证:; (Ⅲ)设,对于任意时,总存在,使成立,求实数的取值范围.
已知抛物线C:,定点M(0,5),直线与轴交于点F,O为原点,若以OM为直径的圆恰好过与抛物线C的交点. (1)求抛物线C的方程; (2)过点M作直线交抛物线C于A,B两点,连AF,BF延长交抛物线分别于,求证: 抛物线C分别过两点的切线的交点Q在一条定直线上运动.
已知正项数列{an}中,a1=1,且log3an,log3an+1是方程x2(2n1)x+bn=0的两个实根. (1)求a2,b1; (2)求数列{an}的通项公式; (3)若,是前项和, ,当时,试比较与的大小.