(本小题满分14分)已知等差数列{an}的首项为a,公差为b,等比数列{bn}的首项为b,公比为a,存在m,n∈N+使得am+1=bn成立,其中a,b均为正整数,且a1<b1<a2<b2<a3 ;(1)求数列{an},{bn}的通项公式;(2)设函数f(x)=bmx+bm-1x2+…+b1xm,f′(x)是函数f(x)的导函数;令Sm=f′(1),求Sm(用含n的代数式表示)
(本小题满分12分)若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f=f(x)-f(y).(1)求f(1)的值;(2)若f(6)=1,解不等式f(x+3)-f<2.
(本小题满分12分)已知函数f(x)=是定义在(-∞,+∞)上的奇函数,且=.(1)求函数f(x)的解析式;(2)判断f(x)在(-1,1)上的单调性,并且证明你的结论.
(本小题满分12分)已知函数f(x)=(1)在给定的直角坐标系内画出f(x)的图象(2)写出f(x)的单调递增区间与减区间.
(本小题满分10分) 已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}. (1)当a=3时,求A∩B; (2)若A∩B=Ø,求实数a的取值范围.
已知集合A=,集合B=若AB,求实数a的取值范围;