如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左右焦点F1、F2为顶点的三角形的周长为。一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的焦点分别为A、B和C、D。(Ⅰ)求椭圆和双曲线的标准方程(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1(Ⅲ)是否存在常数,使得|AB|+|CD|=|AB|·|CD|恒成立?若存在,求的值,若不存在,请说明理由。
已知抛物线C:,P为C上一点且纵坐标为2,Q,R是C上的两个动点,且. (1)求过点P,且与C恰有一个公共点的直线的方程; (2)求证:QR过定点.
已知椭圆过点离心率, (1)求椭圆方程; (2)若过点的直线与椭圆C交于A、B两点,且以AB为直径的圆过原点,试求直线的方程.
已知函数且,其中、 (1)求m的值; (2)求函数的单调增区间.
已知双曲线的焦点为,且离心率为2; (1)求双曲线的标准方程; (2)若经过点的直线交双曲线于两点,且为的中点,求直线的方程.
斜率为2的直线经过抛物线的焦点,且与抛物线相交于两点,求线段的长.