如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左右焦点F1、F2为顶点的三角形的周长为。一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的焦点分别为A、B和C、D。(Ⅰ)求椭圆和双曲线的标准方程(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1(Ⅲ)是否存在常数,使得|AB|+|CD|=|AB|·|CD|恒成立?若存在,求的值,若不存在,请说明理由。
已知圆直线, (1)求直线恒过的定点; (2)判断直线被圆截得的弦长何时最长,何时最短?并求截得的弦长最短时,求的值以及最短长度。
已知直线和直线, (1)若⊥,求 (2)若∥,求
如图,ABCD是正方形,O是该正方形的中心,P是平面ABCD外一点,PO底面ABCD,E是PC的中点. 求证:(1)PA∥平面BDE; (2)平面EBD⊥平面PAC
;。 (3)求BC边的高
已知函数(,). (1)若时,判断函数在上的单调性,并说明理由; (2)若对于定义域内一切,恒成立,求实数的值; (3)在(2)的条件下,当时,的取值恰为,求实数,的值.