如图,已知三棱锥中,, ,为中点,为中点,且△为正三角形。(1)求证:∥平面; (2)求证:平面⊥平面.
(本小题满分13分)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(Ⅰ)第二小组的频率是多少?样本容量是多少?(Ⅱ)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(Ⅲ)在这次测试中,学生跳绳次数的中位数、众数各是是多少?(精确到0.1)
已知函数,,设.(1)求的单调区间;(2)若以图象上任意一点为切点的切线的斜率恒成立,求实数的最小值.(3)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由.
已知椭圆.过点作圆的切线交椭圆于,两点.(1)求椭圆的焦点坐标和离心率;(2)将表示为的函数,并求的最大值.
如图,等边与直角梯形垂直,,,,.若分别为的中点.(1)求的值; (2)求面与面所成的二面角大小.
已知函数(1)若当的表达式;(2)求实数上是单调函数.