如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.
在一次数学考试中,第22,23,24题为选做题,规定每位考生必须且只须在其中选做一题,设5名考生选做这三题的任意一题的可能性均为,每位学生对每题的选择是相互独立的,各学生的选择相互之间没有影响.(1)求其中甲、乙两人选做同一题的概率;(2)设选做第23题的人数为,求的分布列及数学期望.
如图,四棱锥P-ABCD中,,,,,是的中点.(1)求证:;(2)求二面角的平面角的正弦值.
已知函数.(1)求的单调递增区间;(2)在中,三内角的对边分别为,已知,,.求的值.
设函数.(1)当时,求曲线在处的切线方程;(2)当时,求函数的单调区间;(3)在(2)的条件下,设函数,若对于[1,2],[0,1],使成立,求实数的取值范围.
已知椭圆:的长轴长为4,且过点.(1)求椭圆的方程;(2)设、、是椭圆上的三点,若,点为线段的中点,、两点的坐标分别为、,求证:.