已知函数 (1) 求证: 在上为增函数; (2)当,且时,求的值.
如图,在正三棱柱ABC-A1B1C1中,底面ABC为正三角形,M、N、G分别是棱CC1、AB、BC的中点,且.(Ⅰ)求证:CN∥平面AMB1;(Ⅱ)求证: B1M⊥平面AMG.
山东省《体育高考方案》于2012年2月份公布,方案要求以学校为单位进行体育测试,某校对高三1班同学按照高考测试项目按百分制进行了预备测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2人.(Ⅰ)请估计一下这组数据的平均数M;(Ⅱ)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于20,则称这两人为“帮扶组”,试求选出的两人为“帮扶组”的概率.
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,.(Ⅰ)求an与bn;(Ⅱ)设数列{cn}满足,求{cn}的前n项和Tn.
已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量(Ⅰ)求角A的大小;(Ⅱ)若,试判断b·c取得最大值时△ABC形状.
已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.(1)求f(x)的解析式;(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.