(本小题满分12分)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组;第二组……第五组.下图是按上述分组方法得到的频率分布直方图. (I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(II)设、表示该班某两位同学的百米测试成绩,且已知.求事件“”的概率.
已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限). (Ⅰ)求椭圆的方程; (Ⅱ)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.
已知关于的函数 (Ⅰ)当时,求函数的极值; (Ⅱ)若函数没有零点,求实数取值范围.
如图所示,在四棱锥中,底面四边形是菱形,,是边长为2的等边三角形,,. (Ⅰ)求证:底面; (Ⅱ)求直线与平面所成角的大小; (Ⅲ)在线段上是否存在一点,使得∥平面?如果存在,求的值,如果不存在,请说明理由.
根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示. 假设每名队员每次射击相互独立. (Ⅰ)求上图中的值; (Ⅱ)队员甲进行三次射击,求击中目标靶的环数不低于8环的次数的分布列及数学期望(频率当作概率使用); (Ⅲ)由上图判断,在甲、乙两名队员中,哪一名队员的射击成绩更稳定?(结论不需证明)
函数. (Ⅰ)在中,,求的值; (Ⅱ)求函数的最小正周期及其图象的所有对称轴的方程.