命题p:关于的不等式对于一切恒成立,命题q:函数是增函数,若为真,为假,求实数的取值范围;
在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2),且斜率为k的直线与圆Q相交于不同的两点A,B.(1)求k的取值范围;(2)是否存在常数k,使得向量+与共线?如果存在,求k值;如果不存在,请说明理由.
(高考真题)已知函数,其中,为自然对数的底数。(1)设是函数的导函数,求函数在区间上的最小值;(2)(能力提升)若,函数在区间内有零点,求的取值范围
已知函数f(x)=(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间;(3)(能力提升)设g(x)=xf′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2.
函数().若存在,使,求a的取值范围.
[2014高考真题]已知常数,函数.(1)讨论在区间上的单调性;(2)若存在两个极值点,且,求的取值范围.