(12分)如图7-4,已知△ABC中, ∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD绕CD旋转至A′CD,使点A′与点B之间的距离A′B=。(1)求证:BA′⊥平面A′CD;(2)求二面角A′-CD-B的大小;(3)求异面直线A′C与BD所成的角的余弦值。
已知曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,设直线的参数方程为(为参数).(1)求曲线的直角坐标方程与直线的普通方程;(2)设曲线与直线相交于两点,以为一条边作曲线的内接矩形,求该矩形的面积.
已知函数 ,且.(1)若在处取得极值,求的值; (2)求的单调区间;(3)若的最小值为1,求的取值范围.
已知定点,,满足的斜率乘积为定值的动点的轨迹为曲线.(1)求曲线的方程;(2)过点的动直线与曲线的交点为,与过点垂直于轴的直线交于点,又已知点,试判断以为直径的圆与直线的位置关系,并证明.
已知在四棱锥中,底面是矩形,且,,平面,、分别是线段、的中点.(1)证明: (2)在线段上是否存在点,使得∥平面,若存在,确定点的位置;若不存在,说明理由.(3)若与平面所成的角为,求二面角的余弦值
已知函数.函数的图象在点处的切线方程是y=2x+1,(1)求a,b的值。(2)问:m在什么范围取值时,对于任意的,函数在区间上总存在极值?