(12分)如图7-4,已知△ABC中, ∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD绕CD旋转至A′CD,使点A′与点B之间的距离A′B=。(1)求证:BA′⊥平面A′CD;(2)求二面角A′-CD-B的大小;(3)求异面直线A′C与BD所成的角的余弦值。
选修4-1:几何证明选讲 △ABC内接于⊙O,AB=AC,直线MN切⊙O于C,弦BD∥MN,AC、BD交于点E (1)求证:△ABE≌△ACD (2)AB=6,BC=4,求AE
已知圆为圆上一动点,点在上,点在上,且满足的轨迹为曲线. (1)求曲线的方程; (2)若直线与(1)中所求点的轨迹交于不同两点是坐 标原点,且,求△的面积的取值范围.
已知函数 (1)若函数在和时取得极值,当时,<2|c|恒成立,求c的取值范围 (2)若写出使的g(x)>f(x)的x取值范围。
如图所示,四棱锥P—ABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。 (1)求证:BM∥平面PAD; (2)在侧面PAD内找一点N,使MN平面PBD; (3)求直线PC与平面PBD所成角的正弦。
已知函数= (1)若-2(a,b∈Z),求等式>0的解集为R的概率; (2)若,求方程=0两根都为负数的概率.