(12分)如图7-15,在正三棱柱ABC—A1B1C1中,各棱长都等于a,D、E分别是AC1、BB1的中点,(1)求证:DE是异面直线AC1与BB1的公垂线段,并求其长度;(2)求二面角E—AC1—C的大小;(3)求点C1到平面AEC的距离。
已知,,且直线与曲线相切. (1)若对内的一切实数,不等式恒成立,求实数的取值范围; (2)当时,求最大的正整数,使得对(是自然对数的底数)内的任意个实数都有成立; (3)求证:.
设,,其中是常数,且. (1)求函数的极值; (2)证明:对任意正数,存在正数,使不等式成立; (3)设,且,证明:对任意正数都有:.
已知二次函数,关于x的不等式的解集为,其中m为非零常数.设. (1)求a的值; (2)如何取值时,函数存在极值点,并求出极值点; (3)若m=1,且x>0,求证:
设数列{an}、{bn}、{cn}满足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…),求证:{an}为等差数列的充分必要条件是{cn}为等差数列且bn≤bn+1(n=1,2,3,…).
设命题p:关于x的不等式2|x-2|<a的解集为;命题q:函数y=lg(ax2-x+a)的值域是R.如果命题p和q有且仅有一个正确,求实数a的取值范围.