先化简,再求值:(a-1+)÷(a2+1),其中a=-1.
如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + 4 交 y 轴于点 C ,交 x 轴于 A 、 B 两点, A ( − 2 , 0 ) , a + b = 1 2 ,点 M 是抛物线上的动点,点 M 在顶点和 B 点之间运动(不包括顶点和 B 点), ME / / y 轴,交直线 BC 于点 E .
(1)求抛物线的解析式;
(2)求线段 ME 的最大值;
(3)若点 F 在直线 BC 上, EF = 9 2 4 , ∠ EFM = ∠ ACO ,求点 F 的坐标.
已知: ΔABC 是等边三角形,点 E 在直线 AC 上,连接 BE ,以 BE 为边作等边三角形 BEF ,将线段 CE 绕点 C 顺时针旋转 60 ° ,得到线段 CD ,连接 AF 、 AD 、 ED .
(1)如图1,当点 E 在线段 AC 上时,求证: ΔBCE ≅ ΔACD ;
(2)如图1,当点 E 在线段 AC 上时,求证:四边形 ADEF 是平行四边形;
(3)如图2,当点 E 在线段 AC 延长线上时,四边形 ADEF 还是平行四边形吗?如果是,请证明你的结论;如果不是,请说明理由.
某商场经营一种海产品,进价是每千克20元,根据市场调查发现,每日的销售量 y (千克)与售价 x (元 / 千克)是一次函数关系,如图所示:
(1)求 y 与 x 的函数关系式(不求自变量取值范围);
(2)某日该商场出售这种海产品获得了21000元的利润,该海产品的售价是多少?
(3)若某日该商场这种海产品的销售量不少于650千克,该商场销售这种海产品获得的最大利润是多少?
如图, ΔABC 内接于 ⊙ O , BC 是 ⊙ O 的直径,点 A 是 ⊙ O 上的定点, AD 平分 ∠ BAC 交 ⊙ O 于点 D , DG / / BC ,交 AC 延长线于点 G .
(1)求证: DG 与 ⊙ O 相切;
(2)作 BE ⊥ AD 于点 E , CF ⊥ AD 于点 F ,试判断线段 BE 、 CF 、 EF 三者之间的数量关系,并证明你的结论(不用尺规作图的方法补全图形).
如图,四边形 ABCD 是矩形 ( AB < BC ) ,要在矩形 ABCD 内作一个以 AB 为边的正方形 ABEF ,某位同学的作法如下:
①作 ∠ ABC 的平分线 BM . BM 交 AD 于点 F ;
②以点 B 为圆心, BA 长为半径画弧,交 BC 于点 E ,连接 EF .
(1)求证:四边形 ABEF 是正方形;
(2)若 AB = 5 ,求图中阴影部分的面积.