甲、乙等五名志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加岗位服务的概率;(Ⅱ)设随机变量为这五名志愿者中参加岗位服务的人数,求的分布列.
已知函数,. (1)求函数的最小正周期和单调递增区间; (2)若,求的值.
已知数列满足:且. (1)求数列的通项公式; (2)令,数列的前项和为,求证:时,且
如图:两点分别在射线上移动, 且,为坐标原点,动点满足 (1)求点的轨迹的方程; (2)设,过作(1)中曲线的两条切线,切点分别 为,①求证:直线过定点; ②若,求的值。
已知函数. (1)当时,求的单调区间; (2)当时,若存在, 使得成立,求实数的取值范围.
如图,在直三棱柱中,,。M、N分别是AC和BB1的中点。 (1)求二面角的大小。 (2)证明:在AB上存在一个点Q,使得平面⊥平面, 并求出的长度。