(本题10分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点A,B.(1)求椭圆的方程;(2)求的取值范围。
.已知函数 ⑴求函数的定义域; ⑵求使的的取值范围。
已知:全集,,; ⑴若,求,; ⑵若,求:实数的取值范围。
.不用计算器计算: ⑴; ⑵化简:。
设函数,. ⑴求的极值; ⑵设≤,记在上的最大值为,求函数的最小值; ⑶设函数(为常数),若使≤≤在上恒成立的实数有且只有一个,求实数和的值.
已知椭圆:的离心率为,且过点,设椭圆的右准线与轴的交点为,椭圆的上顶点为,直线被以原点为圆心的圆所截得的弦长为. ⑴求椭圆的方程及圆的方程; ⑵若是准线上纵坐标为的点,求证:存在一个异于的点,对于圆上任意一点,有为定值;且当在直线上运动时,点在一个定圆上.