( 12分)已知等差数列,,(1)求数列的通项公式(2)设,求数列的前项和
已知二阶矩阵M有特征值及对应的一个特征向量,并且矩阵M对应的变换将点(-1,2)变换成(-2,4)。(1)求矩阵M及其矩阵M的另一个特征值;(2)求直线在矩阵M的作用下的直线的方程。
对于数列,如果存在一个正整数,使得对任意的()都有成立,那么就把这样一类数列称作周期为的周期数列,的最小值称作数列的最小正周期,以下简称周期.例如当时是周期为的周期数列,当时是周期为的周期数列.(1)设数列满足(),(不同时为0),求证:数列是周期为的周期数列,并求数列的前2012项的和;(2)设数列的前项和为,且. ①若,试判断数列是否为周期数列,并说明理由;②若,试判断数列是否为周期数列,并说明理由;(3)设数列满足(),,,数列的前项和为,试问是否存在实数,使对任意的都有成立,若存在,求出的取值范围;不存在,说明理由.
(本小题满分16分)已知函数f(x)=是定义在R上的奇函数,其值域为.(1) 试求a、b的值;(2) 函数y=g(x)(x∈R)满足:条件1: 当x∈[0,3)时,g(x)=f(x);条件2: g(x+3)=g(x)lnm(m≠1).① 求函数g(x)在x∈[3,9)上的解析式;② 若函数g(x)在x∈[0,+∞)上的值域是闭区间,试探求m的取值范围,并说明理由.
(本小题满分16分)已知椭圆中心为,右顶点为,过定点作直线交椭圆于、两点.(1)若直线与轴垂直,求三角形面积的最大值;(2)若,直线的斜率为,求证:;(3)在轴上,是否存在一点,使直线和的斜率的乘积为非零常数?若存在,求出点的坐标和这个常数;若不存在,说明理由.
(本小题满分14分)如图,△ABC为一个等腰三角形形状的空地,腰CA的长为3(百米),底AB的长为4(百米).现决定在该空地内筑一条笔直的小路EF(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等、面积分别为S1和S2.(1) 若小路一端E为AC的中点,求此时小路的长度;(2) 求的最小值.