在长方形中画出5条线,把它分成的块数与画线的方式有直接关系.按如图1的方式画线,可以把它分成10块.(1)请你在图2中画出5条线,使得把这个长方形分成的块数最少(重合的线只看做一条),最少可分成 块;(2)请你在图2中画出5条线,使得把这个长方形分成的块数最多,最多可分成 块.(画出图形不写画法和理由)
解不等式组 并判断是否为该不等式组的解.
计算: .
(本小题满分10分)(1)如图24—1,已知△ABC中,∠BAC=45°,AB="AC," AD⊥BC于D, 将△ABC沿AD剪开,并分别以AB、AC为轴翻转,点E、F分别是点D的对应点,得到△ABE和△ACF (与△ABC在同一平面内).延长EB、FC相交于G点,证明四边形AEGF是正方形;(2)如果⑴中AB≠AC,其他不变,如图24—2.那么四边形AEGF是否是正方形?请说明理由.(3)在⑵中,若BD=2,DC=3,求AD的长.
阅读材料:如图23—1,的周长为,面积为S,内切圆的半径为,探究与S、之间的关系.连结,,又,,∴∴解决问题:(1)利用探究的结论,计算边长分别为5,12,13的三角形内切圆半径;(2)若四边形存在内切圆(与各边都相切的圆),如图23—2且面积为,各边长分别为,,,,试推导四边形的内切圆半径公式;(3)若一个边形(为不小于3的整数)存在内切圆,且面积为,各边长分别为,,,,,合理猜想其内切圆半径公式(不需说明理由).
如图11,正比例函数的图像与一次函数的图像交于点A(m,2), 一次函数图像经过点B , 与y轴的交点为C与轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积。