如图,四棱锥中,⊥底面,底面为梯形,,,且,点是棱上的动点.(Ⅰ)当∥平面时,确定点在棱上的位置;(Ⅱ)在(Ⅰ)的条件下,求二面角的余弦值.
已知二次函数满足且.(1)求的解析式; (2)当时,方程恒成立,求实数的范围.
已知,.(1)当时,求;(2)若,求实数的取值范围.
(1)求值:(2)解方程:
已知函数,是都不为零的常数.(1)若函数在上是单调函数,求满足的条件;(2)设函数,若有两个极值点,求实数的取值范围.
已知椭圆C:的焦距为4,且与椭圆有相同的离心率,斜率为的直线经过点M(0,1),与椭圆C交于不同的两点A ,B.(1)求椭圆C的标准方程;(2)当椭圆C的右焦点F在以AB为直径的圆内时,求的取值范围.