(本小题满分12分)如图,在矩形中,,又⊥平面,.(Ⅰ)若在边上存在一点,使,求的取值范围;(Ⅱ)当边上存在唯一点,使时,求二面角的余弦值.
已知椭圆的两个焦点坐标分别是,并且经过点.(1)求椭圆的标准方程;(2)若斜率为的直线经过点,且与椭圆交于不同的两点,求 面积的最大值.
如图,在四棱锥中,底面是边长为2的菱形,E、F分别是PB、CD的中点,且.(1)求证:;(2)求证:;(3)求二面角的余弦值.
已知数列满足 (1)求的值;(2)是否存在一个实常数,使得数列为等差数列,请说明理由.
在中,角、B、C的对边分别为a,b,c,且,(1)求的值;(2)求的值.
已知函数(1)求的值;(2)求的递减区间.