已知函数(1)求的值;(2)求的递减区间.
已知点是直角坐标平面内的动点,点到直线(是正常数)的距离为,到点的距离为,且1. (1)求动点P所在曲线C的方程; (2)直线过点F且与曲线C交于不同两点A、B,分别过A、B点作直线的垂线,对应的垂足分别为,求证=; (3)记,, (A、B、是(2)中的点),,求的值.
设函数. (1) 试问函数f(x)能否在x= 时取得极值?说明理由; (2) 若a= ,当x∈[,4]时,函数f(x)与g(x)的图像有两个公共点,求c的取值范围.
某种产品的广告费支出与销售额(单位:万元)之间有如下对应数据:
(Ⅰ)求回归直线方程; (Ⅱ)试预测广告费支出为10万元时,销售额多大? (Ⅲ)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率。 (参考数据:, 参考公式:回归直线方程,其中)
如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点. (Ⅰ)求证:DC平面ABC; (Ⅱ)设,求三棱锥A-BFE的体积.
已知向量,函数,且图象上一个最高点的坐标为,与之相邻的一个最低点的坐标为. (1)求的解析式; (2)在△ABC中,是角A、B、C所对的边,且满足,求角B的大 小以及的取值范围.