(本小题满分12分)盒子内有大小相同的9个球,其中2个红色小球,3个白色小球,4个黑色小球,规定取出1红色小球得到1分, 取出1白色小球得到0分, 取出1个黑色小球得到-1分,现从盒子中任取3个小球。(Ⅰ)求取出的3个球颜色互不相同的概率;(Ⅱ)求取出的3个球得分之和恰好为1分的概率;(Ⅲ)设ξ为取出的3个球中白色球的个数,求ξ的分布列及数学期望.
(1) 求不等式的解集: (2)求函数的定义域:
已知直线 (1)当时,求与的交点坐标; (2)过坐标原点O作的垂线,垂足为A,P为OA的中点,当变化时,求P点的轨迹的参数方程, (3)并指出它是什么曲线。
在平面直角坐标系xoy中,已知曲线,将上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线,以平面直角坐标系xoy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线 (1)试写出直线的直角坐标方程; (2)在曲线上求一点P,使点P到直线的距离最大,并求出此最大值。
已知圆的方程为 (1)求圆心轨迹C的参数方程; (2)点是(1)中曲线C上的动点,求的取值范围。
从极点O作直线和直线相交于点M,在OM上取一点P,使,求点P的轨迹的极坐标方程。