(本小题满分12分)盒子内有大小相同的9个球,其中2个红色小球,3个白色小球,4个黑色小球,规定取出1红色小球得到1分, 取出1白色小球得到0分, 取出1个黑色小球得到-1分,现从盒子中任取3个小球。(Ⅰ)求取出的3个球颜色互不相同的概率;(Ⅱ)求取出的3个球得分之和恰好为1分的概率;(Ⅲ)设ξ为取出的3个球中白色球的个数,求ξ的分布列及数学期望.
(满分12分)某同学参加3门课程的考试.假设该同学第一门课程取得优秀的概率是,第二、第三门课程取得优秀成绩的概率分别是p,q(p>q),且不同课程是否取得优秀成绩相互独立,记X为该生取得优秀成绩的课程数,其分布列为
(1) 求该生至少有1门课程取得优秀成绩的概率;(2) 求p,q的值;(3) 求数学期望E(X).
(满分12分)已知二项式的展开式中前三项的系数成等差数列.(1)求的值;(2)设.①求的值; ②求的值.
(满分12分)从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,可以组成多少:(列出式子并用数字给出最后答案)(1)无重复数字的五位数;(2)万位、百位和个位数字是奇数的无重复数字的五位数;(3)千位和十位数字只能是奇数的无重复数字的五位数.
(本小题12分)已知为复数,且,,求复数.
(本小题10分)求经过点,且与圆相切于点的圆的方程。