(满分12分)某同学参加3门课程的考试.假设该同学第一门课程取得优秀的概率是,第二、第三门课程取得优秀成绩的概率分别是p,q(p>q),且不同课程是否取得优秀成绩相互独立,记X为该生取得优秀成绩的课程数,其分布列为
(1) 求该生至少有1门课程取得优秀成绩的概率;(2) 求p,q的值;(3) 求数学期望E(X).
已知三个内角的对边分别为,向量,,且与的夹角为. (1)求角的值; (2)已知,的面积,求的值.
已知函数. (1)求不等式的解集; (2)若关于的不等式在上恒成立,求实数的取值范围.
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标,曲线的极坐标方程为(其中为常数). (1)若曲线与曲线只有一个公共点,求的取值范围; (2)当时,求曲线上的点与曲线上的点的最小距离
如图,在中,是的角平分线,的外接圆交于,. (1)求证:; (2)当时,求的长.
若,其中. (1)当时,求函数在区间上的最大值; (2)当时,若恒成立,求的取值范围.