(本小题13分)某工厂要建造一个无盖长方体水池,底面一边长固定为8,最大装水量为72,池底和池壁的造价分别为元、元,怎样设计水池底的另一边长和水池的高,才能使水池的总造价最低?最低造价是多少?
(本小题满分12分)如图,已知是直角梯形,,,,平面.(1) 证明:;(2) 若是的中点,证明:∥平面;(3)若,求三棱锥的体积.
、扇形的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求该扇形的面积取得最大值时圆心角的大小和弦长.
已知函数(1)设是函数的图象的一条对称轴,求的值;(2)求函数的值域m
(本小题满分14分) 已知函数f(x)=2sin2(+x)-cos2x. (1)求f(x)的值域; (2)求f(x)的周期及单调递减区间.
.(本小题满分14分) 给定两个长度为1的平面向量和,它们的夹角为120°.如图所示,点C在以O为圆心的圆弧上变动.若,其中x,yÎR,试求x+y的最大值.