某饰品店店老板去批发市场购买新款手链,第一次购手链共用100元,按该手链的定价2.8元现售,并很快售完.由于该手链深得年轻人喜爱十分畅销,第二次去购手链时,每条的批发价已比第一次高0.5元,共用去了150元,所购数量比第一次多10条.当这批手链售出时,出现滞销,便以定价的5折售完剩余的手链,试问该老板第二次售手链是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?,若赚钱,赚多少?
计算(每小题5分,共10分): (1); (2).
(本题14分)已知:如图,在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD的边AB、BC、DA上,AE=2. (1)如图(1),当四边形EFGH为正方形时,求△GFC的面积. (2)如图(2),当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用含a的代数式表示). (3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.
(本题11分)“五一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x之间的关系如图所示. (1)求a的值. (2)求检票到第20分钟时,候车室排队等候检票的旅客人数. (3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问:检票一开始至少需要同时开放几个检票口?
(本小题8分)如下图,过正方形ABCD的顶点B作直线l,过点A,C作直线l的垂线,垂足分别为E,F,直线AE交CD于点G. (1)求证:△ABE≌△BCF; (2)若∠CBF=65°,求∠AGC的度数.
(本题9分)某中学开展“感恩父母”演讲比赛活动,八(1)、八(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示。 (1)根据下图,分别求出两班复赛的平均成绩和方差; (2)根据(1)的计算结果,哪个班级的复赛成绩较好?为什么?