已知函数,其中为常数。(1)若在(0,1)上单调递增,求实数的取值范围;(2)求证:。
已知定义在上的函数,其中为大于零的常数. (Ⅰ)当时,令, 求证:当时,(为自然对数的底数); (Ⅱ)若函数,在处取得最大值, 求的取值范围
已知,点在曲线上且 (Ⅰ)求证:数列为等差数列,并求数列的通项公式; (Ⅱ)设数列的前n项和为,若对于任意的,存在正整数t,使得恒成立,求最小正整数t的值.
(本小题14分) 已知函数, (Ⅰ)求; (Ⅱ)已知数列满足,,求数列的通项公式; (Ⅲ)求证:.
(本小题14分) 已知椭圆的一个顶点为,离心率. (Ⅰ)求椭圆的方程; (Ⅱ)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为, 求△AOB面积的最大值.
(本小题13分) 定义在上的函数同时满足以下条件: ①在上是减函数,在上是增函数;②是偶函数; ③在处的切线与直线垂直. (Ⅰ)求函数的解析式; (Ⅱ)设,求函数在上的最小值.