为了参加广州亚运会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下表:
(1)从这18名队员中随机选出两名,求两人来自同一支队的概率;(2)中国女排奋力拼搏,战胜韩国队获得冠军.若要求选出两位队员代表发言,设其中来自北京队的人数为,求随机变量的分布列及数学期望.
已知a>0,设命题p:函数y=ax在R上单调递减,q:不等式x+|x-2a|>1的解集为R,若p和q中有且只有一个命题为真命题,求a的取值范围.
已知p:|1-|≤2,q:x2-2x+1-m2≤0(m>0),且p是q的必要而不充分条件,求实数m的取值范围.
(1)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的充分条件?如果存在,求出p的取值范围; (2)是否存在实数p,使“4x+p<0”是“x2-x-2>0”的必要条件?如果存在,求出p的取值范围.
写出下列命题的“否定”,并判断其真假. (1)p:x∈R,x2-x+≥0; (2)q:所有的正方形都是矩形; (3)r:x∈R,x2+2x+2≤0; (4)s:至少有一个实数x,使x3+1=0.
分别指出由下列命题构成的“pq”、“pq”、“p”形式的命题的真假. (1)p:4∈{2,3},q:2∈{2,3}; (2)p:1是奇数,q:1是质数; (3)p:0∈,q:{x|x2-3x-5<0}R; (4)p:5≤5,q:27不是质数; (5)p:不等式x2+2x-8<0的解集是{x|-4<x<2}, q:不等式x2+2x-8<0的解集是{x|x<-4或x>2}.