(本小题满分12分)如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<).(1)求MN的长;(2)当a为何值时,MN的长最小;(3)当MN的长最小时,求面MNA与面MNB所成的二面角的余弦值.
已知A(-1,2),B(2,8).(1)若=,=-,求的坐标;(2)设G(0,5),若⊥,∥,求E点坐标.
函数f(x)=sin(ωx+φ),()的图象如图所示.试求:(1)f(x)的解析式;(2)f(x)的单调递增区间;(3)使f(x)取最小值的x的取值集合.
已知函数.(Ⅰ)若函数是R上的单调递增函数,求实数的的取值范围; (Ⅱ)若是的一个极值点,求在上的极大值与极小值
已知顶点是坐标原点,对称轴是轴的抛物线经过点.(Ⅰ)求抛物线的标准方程;(Ⅱ)直线过点,且与抛物线交于不同两点A,B,若,求直线的方程.
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=+10(x-6)2. 其中3<x<6,a为常数. 已知销售价格为5元/千克时,每日可售出该商品11千克.(Ⅰ)求a的值;(Ⅱ)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.