(本题8分)水坝的横断面为梯形ABCD,迎水坡BC的坡角B为30°,背水坡AD坡比为1:1.5,坝顶宽DC=2米,坝高4米,求:(1)坝底AB的长; (2)迎水坡BC的坡比.
化简后再求值:,其中
解下列方程(1); (2)
(本题14分)如图①,直线:分别与轴、轴交于A、B两点,与直线:交于点.(1)求A、B两点坐标及、的值;(2)如图②,在线段BC上有一点E,过点E作轴的平行线交直线于点F,过E、F分别作EH⊥轴,FG⊥轴,垂足分别为H、G,设点E的横坐标为,当为何值时,矩形EFGH的面积为;(3)若点P为轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.
(本题10分)已知如图:点(1,3)在函数(x>0)的图象上,矩形ABCD的边BC在x轴上,E是对角线BD的中点,函数(x>0)的图象又经过A、E两点,点E的横坐标为m.(1)求k的值;(2)求点A的坐标;(用含m代数式表示)(3)当∠ABD=45°时,求m的值.
(本题10分)某超市如果将进货价为40元的商品按50元销售,就能卖出500个,但如果这种商品每个涨价1元,其销售量就减少10个,如果你是超市的经理,为了赚得8 000元的利润,你认为售价(售价不能超过进价的160%)应定为多少?这时应进货多少个?