(本小题满分14分)正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角.(1)试判断直线与平面的位置关系,并说明理由;(2)求二面角的余弦值;(3)在线段上是否存在一点,使?证明你的结论.
已知数列的前项和为. (Ⅰ)求数列的通项公式; (Ⅱ)记,求数列的前项和.
某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用该药,第一次服药后每毫升血液中的含药量与服药后的时间之间近似满足如图所示的曲线。其中是直线段,曲线部分是过、两点的函数的图象。 (I)写出第一次服药后每毫升血液中含药量关于时间的函数关系式; (II)据测定:每毫升血液中含药量不少于时治疗有效,假若某病人第一次服药为早上6:00,为保持疗效,第二次服药最迟是当天几点钟? (Ⅲ) 若按(II)中的最迟时间服用第二次药,则第二次服药后再过,该病人每毫升血液中含药量为多少?(精确到)。
已知函数, (I)求函数的递增区间; (II)求函数在区间上的值域。
已知, (I)判断的奇偶性; (II)时,判断在上的单调性并给出证明。
(本题满分12分)已知, 是平面上的一组基底,若+λ,, (I)若与共线,求的值; (II)若、是夹角为的单位向量,当时,求的最大值。