.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-D的大小(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。
某高校在2011年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示. (1)分别求第3,4,5组的频率; (2) 若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试, (ⅰ) 已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙同时进入第二轮面试的概率; (ⅱ) 学校决定在这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有名学生被考官D面试,求的分布列和数学期望.
如图,在直三棱柱中,,,分别为,的中点,四边形是边长为的正方形. (1)求证:平面; (2)求二面角的余弦值.
已知数列为等差数列,且 (1)求数列的通项公式; (2)证明:
已知平面向量,,,其中,且函数的图象过点. (1)求的值; (2) 将函数图象上各点的横坐标变为原来的的2倍,纵坐标不变,得到函数的图象,求函数在上的最大值和最小值.
已知. (1)求;(2)判断的奇偶性与单调性; (3)对于,当,求m的集合M。