如图,直线与抛物线,交于A,B两点,线段AB的垂直平分线与直线y+5=0交于点Q(1)求点Q的坐标(2)当点P为抛物线上位于线段AB下方(含点A,B)的动点时,求△OPQ面积的最大值
已知函数(,,)的图像与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别为和 (1)求函数的解析式; (2)若锐角满足,求的值.
已知 (1)求的极值, 并证明:若有; (2)设,且,, 证明:, 若,由上述结论猜想一个一般性结论(不需要证明); (3)证明:若,则
已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上. (1)求抛物线和椭圆的标准方程; (2)过点的直线交抛物线于两不同点,交轴于点,已知,求的值; (3)直线交椭圆于两不同点,在轴的射影分别为,,若点满足,证明:点在椭圆上.
设函数 (1)求f(x)≤6 的解集 (2)若f(x)≥m对任意x∈R恒成立,求m的范围。
设直线的参数方程为(t为参数),若以直角坐标系的点为极点,轴为极轴,选择相同的长度单位建立极坐标系,得曲线的极坐标方程为ρ=. (1)将曲线的极坐标方程化为直角坐标方程,并指出曲线是什么曲线; (2)若直线与曲线交于A、B两点,求.